Excitable Tissues, Resting Membrane Potential & Action Potential

Prof. Vajira Weerasinghe Dept of Physiology Faculty of Medicine

Objectives

Explain why some membranes are excitable
 Describe the electrochemical basis of RMP

Excitable Tissues

 Tissues which are capable of generation and transmission of electrochemical impulses along the membrane

Nerve

Excitable tissues

excitable

Nerve
Muscle
Skeletal
Cardiac
Smooth

Non-excitable

RBCIntestinal cellsFibroblastsAdipocytes

Membrane potential +++++

- A potential difference exists across all cell membranes
- This is called
 - Resting Membrane Potential (RMP)

Membrane potential

- Inside is negative with respect to the outside

- This is measured using microelectrodes and oscilloscope
- This is about -70 to -90 mV

Excitable tissues

neuron muscle

excitable

 Excitable tissues have more negative RMP (- 70 mV to - 90 mV)

Non-excitable

 Non-excitable tissues have less negative RMP
 -53 mV epithelial cells
 -8.4 mV RBC
 -20 to -30 mV fibroblasts
 -58 mV adipocytes

Resting Membrane Potential

- This depends on following factors
 - Ionic distribution across the membrane
 - Membrane permeability
 - Other factors
 - Na+/K+ pump

lonic distribution

Na⁺ Cl⁻

Major ions

- Extracellular ions
 - Sodium, Chloride
- Intracellular ions
 - Potassium, Proteinate

lonic distribution

lon	Intracellular	Extracellular
Na ⁺	10	142
K+	140	4
Cl-	4	103
Ca ²⁺	0	2.4
HCO ₃ -	10	28

Gibbs Donnan Equilibrium

- When two solutions containing ions are separated by membrane that is permeable to some of the ions and not to others an electrochemical equilibrium is established
- Electrical and chemical energies on either side of the membrane are equal and opposite to each other

Flow of Potassium

- Potassium concentration intracellular is more
- Membrane is freely permeable to κ⁺
- There is an efflux of K⁺

Flow of Potassium

Entry of positive ions in to the extracellular fluid creates positivity outside and negativity inside

Flow of Potassium

- Outside positivity resists efflux of K⁺
- (since K⁺ is a positive ion)
- At a certain voltage an equilibrium is reached and K⁺ efflux stops

Nernst potential (Equilibrium potential)

- The potential level across the membrane that will exactly prevent net diffusion of an ion
- Nernst equation determines this potential

$$E = \frac{RT}{zF} \ln \frac{\text{[ion outside cell]}}{\text{[ion inside cell]}}$$

Nernst potential (Equilibrium potential)

• The potential level across the membrane that will exactly prevent net diffusion of an ion

lon	Intracellular	Extracellular	Nernst potential
Na ⁺	10	142	+58
K+	140	4	-92
Cl-	4	103	-89
Ca ²⁺	0	2.4	+129
HCO ₃ -	10	28	-23

(mmol/l)

Goldman Equation

- When the membrane is permeable to several ions the equilibrium potential that develops depends on
 - Polarity of each ion
 - Membrane permeability
 - Ionic conc

This is calculated using Goldman Equation (or GHK Equation)

$$V_{\rm m} = \frac{RT}{F} \ln \left(\frac{p_{\rm K}[{\rm K}]_{\rm o} + p_{\rm Na}[{\rm Na}]_{\rm o} + p_{\rm Cl}[{\rm Cl}]_{\rm i}}{p_{\rm K}[{\rm K}]_{\rm i} + p_{\rm Na}[{\rm Na}]_{\rm i} + p_{\rm Cl}[{\rm Cl}]_{\rm o}} \right)$$

• In the resting state

K+ permeability is 20 times more than that of Na+

Ionic channels

- Leaky channels (K-Na leak channel)
 - More permeable to K
 - Allows free flow of ions

Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only.

- Active transport system for Na+-K+ exchange using energy
- It is an electrogenic pump since 3 Na+ efflux coupled with 2 K+ influx
- Net effect of causing negative charge inside the membrane

Factors contributing to RMP

- One of the main factors is K+ efflux (Nernst Potential: -94mV)
- Contribution of Na influx is little (Nernst Potential: +61mV)
- Na/K pump causes more negativity inside the membrane
- Negatively charged protein ions remaining inside the membrane contributes to the negativity
- Net result: -70 to -90 mV inside

Electrochemical gradient

- At this electrochemical equilibrium, there is an exact balance between two opposing forces:
- Chemical driving force = ratio of concentrations on 2 sides of membrane (concentration gradient)
 - The concentration gradient that causes K+ to move from inside to outside taking along positive charge and
- Electrical driving force = potential difference across membrane
 - opposing electrical gradient that increasingly tends to stop K+ from moving across the membrane
- Equilibrium: when chemical driving force is balanced by electrical driving force

Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only.

Action potential

Objectives

- Describe the mechanism of generation and propagation of AP
- Explain the differences in AP of skeletal, cardiac and smooth muscles

Action Potential (A.P.)

- When an impulse is generated
 - Inside becomes positive
 - Causes depolarisation
 - Nerve impulses are transmitted as AP

Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only.

Inside of the membrane is

- Negative
 - During RMP
- Positive
 - When an AP is generated

- Initially membrane is slowly depolarised
- Until the threshold level is reached
 - (This may be caused by the stimulus)

 Then a sudden change in polarisation causes sharp upstroke (depolarisation) which goes beyond the zero level up to +35 mV

 Then a sudden decrease in polarisation causes initial sharp down stroke (repolarisation)

- When reaching the Resting level rate slows down
- Can go beyond the resting level

 hyperpolarisation

All or none law

- Until the threshold level the potential is graded
- Once the threshold level is reached
 - AP is set off and no one can stop it !
 - Like a gun

All or none law

- The principle that the strength by which a nerve or muscle fiber responds to a stimulus is not dependent on the strength of the stimulus
- If the stimulus is any strength above threshold, the nerve or muscle fiber will give a complete response or otherwise no response at all

Physiological basis of AP

- When the threshold level is reached
 - Voltage-gated Na+ channels open up
 - Since Na conc outside is more than the inside
 - Na influx will occur
 - Positive ion coming inside increases the positivity of the membrane potential and causes depolarisation
 - When it reaches +30, Na+ channels closes
 - Then Voltage-gated K+ channels open up
 - K+ efflux occurs
 - Positive ion leaving the inside causes more negativity inside the membrane
 - Repolarisation occurs

Physiological basis of AP

- Since Na+ has come in and K+ has gone out
- Membrane has become negative
- But ionic distribution has become unequal
- Na+/K+ pump restores Na+ and K+ conc slowly

 By pumping 3 Na+ ions outward and 2+ K ions
 inward

VOLTAGE-GATED ION CHANNELS

- Na+ channel
 - This has two gates
 - Activation and inactivation gates

- At rest: the activation gate is closed
- At threshold level: activation gate opens
 - Na+ influx will occur
 - Na+ permeability increases to 500 fold
- when reaching +30, inactivation gate closes
 - Na influx stops
- Inactivation gate will not reopen until resting membrane potential is reached
- Na+ channel opens fast

VOLTAGE-GATED K+ Channel

K+ channel

- This has only one gate

- At rest: K+ channel is closed
- At +30
 - K+ channel open up slowly
 - This slow activation causes K efflux

 After reaching the resting still slow K+ channels may remain open: causing further hyperpolarisation

Summary

Refractory Period

- Absolute refractory period
 - During this period nerve membrane cannot be excited again
 - Because of the closure of inactivation gate

inside

Refractory Period

- Relative refractory period
 - During this period nerve membrane can be excited by supra threshold stimuli
 - At the end of repolarisation phase inactivation gate opens and activation gate closes
 - This can be opened by greater stimuli strength

- When one area is depolarised
- A potential difference exists between that site and the adjacent membrane
- A local current flow is initiated
- Local circuit is completed by extra cellular fluid

- This local current flow will cause opening of voltage-gated Na channel in the adjacent membrane
- Na influx will occur
- Membrane is deloparised

- Then the previous area become repolarised
- This process continue to work
- Resulting in propagation of AP

AP propagation along myelinated nerves

- Na channels are conc around nodes
- Therefore depolarisation mainly occurs at nodes

AP propagation along myelinated nerves

- Local current will flow one node to another
- Thus propagation of A.P. is faster. Conduction through myelinated fibres also faster.
- Known as Saltatory Conduction

Re-establishment of Na & K conc after A.P. – Na-K Pump is responsible for this. – Energy is consumed

Membrane stabilisers

Membrane stabilisers (these decrease excitability)

- Increased serum Ca++
 - Hypocalcaemia causes membrane instability and spontaneous activation of nerve membrane
 - Reduced Ca level facilitates Na entry
 - Spontaneous activation
- Decreased serum K+
- Local anaesthetics
- Acidosis
- Hypoxia

Membrane destabilisers (these increase excitability)

- Decreased serum Ca++
- Increased serum K+
- Alkalosis

Muscle action potentials

- Skeletal muscle
- Smooth muscle
- Cardiac muscle

Skeletal muscle

• Similar to nerve action potential

Cardiac muscle action potential

Phases

- 0: depolarisation
- 1: short repolarisation
- 2: plateau phase
- 3: repolarisation
- 4: resting

Duration is about 250 msec

Cardiac muscle action potential

Phases

- 0: depolarisation (Na+ influx through fast Na+ channels)
- 1: short repolarisation (K+ efflux through K+ channels, CI- influx as well)
 - 2: plateau phase (Ca++ influx through slow Ca++ channels)
- 3: repolarisation (K+ efflux through K+ channels)
- 4: resting

Smooth muscle

- Resting membrane potential may be about -55mV
- Action potential is similar to nerve AP
- But AP is not necessary for its contraction
- Smooth muscle contraction can occur by hormones

Depolarisation

- Activation of nerve membrane
- Membrane potential becomes positive
- Due to influx of Na+ or Ca++

Hyperpolarisation

- Inhibition of nerve membrane
- Membrane potential becomes more negative
- Due to efflux of K+ or influx of Cl⁻